Strain and Stress Field Measurement in Functionally Graded Adhesive Joints Bonded by Honeymoon Adhesion Using Two Types of Second Generation Acryllic Adhesives

Shota KAWASAKI, Yu SEKIGUCHI, Gosuke NAKAJIMA, Kosuke HARAGA and Chiaki SATO

1Graduate School, Tokyo Institute of Technology
2 Institute of Innovative Research, Tokyo Institute of Technology
3 Denka Company Limited
4 HARAGA Adhesion Technology Consulting Co., Ltd.

kawasaki.s.ad@m.titech.ac.jp

Abstract: In this study, the strain field of the adhesive layer in a functionally graded adhesive joint (FGAJ) was measured using the digital image correlation (DIC) method. The DIC results are compared to analytical results obtained by the finite element method (FEM). As a result, analytical shear strain using the FEM exhibits the same tendency of DIC results.

Keywords: Functionally graded adhesive joints / Digital image correlation method / Honeymoon adhesion / Second generation acrylic adhesives

1. Introduction
An adhesively bonded joint has stress concentration points at the both ends of the adhesive layer. As a method to make the stress distribution uniform, functionally graded adhesive joints (FGAJs) have been proposed by a few researchers. In this study, functionally graded adhesive joints was realized by honeymoon adhesion using second generation acrylic adhesives. Some authors have researched the joints to obtain the strain field but experimental approach is still rare. In this study, the strain field of a FGAJ was measured using the digital image correlation (DIC) method. The DIC method is an optical experimental technique for measuring displacement and strain fields. The measured strain field was compared to analytical results calculated by the FEM.

2. Experimental
2.1 Specimens
For this study, two types of SGA, one was brittle and the other was flexible, were used. These adhesives were both two-component type, thus, the total number of components was four. So-called honeymoon adhesion, in which each component of an adhesive is applied to different adherends and the adhesive is cured when these components come into contact with each other, is used for the proposed method as shown in Figure 1. Single lap shear joint (SLJ) specimens were made with aluminum alloy adherends. The mixing ratio of the SGAs was varied to control the mechanical properties of the adhesive layer. The configuration and dimensions of the SLJ specimens for the research are shown in Figure 2.

Figure 1. Schematic manufacturing method of FGAJs bonded by honeymoon adhesion
2.2 The experimental setup
Tensile tests of SLJs were performed using a servo-hydraulic cycle test machine (Instron 8802, Illinois Tool Works Inc., USA) that had a capacity of 100 kN. The experimental setup was shown in Figure 3. As shown in Figure 4 (a), an area captured by digital camera (LRA500PC-2S, Shodensha, Inc., Japan) is the upper half of adhesive layer in SLJs. An enlarged view of the random pattern is shown in Figure 4 (b).

3. Results and Discussion
From the comparison of DIC results with FEM results, the shear strains were underestimated by FEM compared to DIC. However, analytical shear strain exhibited the same tendency to the measurement results. And the stress field of adhesive layer is calculated based on the strain distribution. From the result of the stress field, FGAJ could reduce stress concentration at the ends of overlap in comparison with brittle adhesive alone.

4. Conclusions
- Strain and stress field of adhesive layer in the FGAJ could be measured using DIC technique.
- Analytical shear strain using the FEM denotes the same tendency of DIC results.
- FGAJ could reduce stress concentration at the ends of overlap.

Acknowledgments
The authors would like to acknowledge the contributions of equipment and technical support provided by Musashi Engineering Co., Ltd.

Reference
AACA2016
The 6th Asian Conference on Adhesion
The 54th Symposium
of The Adhesion Society of Japan

ABSTRACTS

June 16 to 18, 2016
Venue: Tokyo Institute of Technology, Tokyo, Japan

Co-hosted and Supported by
Beijing Adhesion Society (China)
The Society of Adhesion and Interface (Korea)

The Japan Society of Applied Physics
The Japan Reinforced Plastics Society
The Kinki Chemical Society, Japan
The Society of Polymer Science, Japan
Japan Welding Society
Society of Automotive Engineers of Japan
The Society of Fiber Science and Technology, Japan
The Japan Society for Precision Engineering
The Institute of Electrical Engineers of Japan
The Japan Electronic Materials Society
Japan Society of Civil Engineers
The Chemical Society of Japan
The Japan Society of Mechanical Engineers
Architectural Institute of Japan
The Japan Society for Aeronautical and Space Sciences

The Society of Rubber Science and Technology, Japan
The Society of Materials Science, Japan
The Japanese Society for Biomaterials
Japan Society for Composite Materials
The Japan Wood Research Society
Wood Technological Association of Japan
The Society of Rheology, Japan
The Ceramic Society of Japan
Japan Society of Colour Material
Japan Packaging Institute
The Japan Society of Polymer Processing
Reliability Engineering Association of Japan
Japan Thermosetting Plastics Industry Association
The Japan Institute of Electronics Packaging
Japan Adhesive Industry Association

Organized by The Adhesion Society of Japan